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Phasemeter

The output of the photoreceivers will be a beat note (a sine wave).
Gravitational wave information is contained in the phase of this beat note.

A phasemeter measures the relative phase of two electronic signals.
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Phasemeter Requirements

» Science phasemeter must

— Resolve the 1,000 cycles/\ Hz of laser noise to 3 pcycles/N Hz @ 5
mHz (corresponding to 3 pm/N Hz @ 5 mHz)

— Track the frequency of the beat note, dominated by the annual
variations in Doppler frequency (2 MHz to 20 MHz)

— Multi-tone phase measurement and tracking capability for clock phase
noise measurement

« Secondary tones 1 MHz from carrier with -20 dBc amplitude.
— Provide high speed output to lock slave laser to master laser
with < 3 Hz/V Hz relative noise (less than intrinsic laser noise).

« Goal: Lock with < 2 pcycles/\ Hz to simplify TDI, reduce telemetry,
etc.

» Auto acquisition, auto gain, reconfigurable controller response (e.g
phase-locking or arm-locking).
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Why not zero-crossing phasemeter?

« No information between zero-crossing points.
— Effective sampling rate = heterodyne frequency.
— Introduces aliasing of noise from 2f, 3f, 4f,... (and 0f)
 For LISA could have up to 10 harmonics.
— Measurement noise increased \ 10 x shot noise ~ 30 pm/y Hz.

Alias-test of SR620; 1 Vpp 200 kHz + 0.1 Vpp (400 kHz + df)
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« Zero-crossing phasemeters are not well suited for LISA.

— Broadband (shot) noise
— Sub-shot noise phasemeter error allocation.
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Breadboard Phasemeter

FPGA programmed in LabView
uses off the shelf equipment.
8 channels per FPGA.

One floating point processor
handles all channels.

Science and Fast phasemeters
share common ADCs.

Only linear phase filters used,
avoids complicating data
analysis.
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Science phasemeter testing
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» Phasemeter designed to have aliasing suppression of 107 in
the LISA signal band.

Alias-test of SR620; 1 Vpp 200 kHz + 0.1 Vpp (400 kHz + df)
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Sampling time jitter

Jitter in the sampling time 6t
produces a phase error
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For 1 pcycle/N Hz phase noise
requirement, and a 20 MHz
heterodyne frequency.

& <0.5x 1013 s/\ Hz

Jitter in the sampling time
arising from clock is already
removed.

Remaining sampling jitter is the
fluctuating latency of the ADC.
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Calibrate jitter by processing the
phase of a known signal at a
different frequency using the same
ADC.
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Phasemeter Performance
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Cycle Slipping

* Cycle slipping is most sensitive to the input’s high frequency
noise.
— Low frequency noise is suppressed by loop gain.

30 Hz/N Hz white frequency noise is too high for current
phasemeter.
— Cycle slipping sets in around 12 Hz/A\ Hz white noise.

« More realistic laser frequency noise rolls off.
— 30 Hz/\ Hz with 1/f roll off above 400 Hz is okay.

Cycle Slipping Solutions:
1. Tighten laser frequency noise requirement at high frequencies.

2. Increase digital phase-locked loop update rate to reduce the
noise in Q.
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Laser Locking Output

 Low-latency phase measurement for laser phase-locking and arm-locking.
«  All-digital controller implemented on reconfigurable FPGA.

« Uses same ADC as science phasemeter.

*  Dynamically adjustable heterodyne frequency.

«  Auto-acquisition mode driven by frequency counter (lasers need only be
within 20 MHz).

«  Automatically senses lock status and switches controller from a low-gain
acquisition mode to the high-gain science mode.

Phasemeter

f(——— == - - - = N — Locked coﬁtroller
40 MHz FPGA | 1 MHz ToPZT 8 . —— Acquisition controller
From o aoc L Digital Digital |- . > 210
Photodetector | " |Demodulation Controller [ > )
ToThermal §
\ _ _ J ———
0 -
10 = =
10° 10' 10° 10° 10* 10°
O——
?
Thermal PZT o -50
&
o, -100
3
D £
o
-200
Photodetector 10° 10’ 102 10° 10* 10°

Frequency [Hz]

mL/SA L@
@ . @cesa



Laser Locking Output

% The fast-phasemeter has been used to

Phase Locking Performance

phase-lock two commercial NPRO lasers 18 55355:::”:::::::::':::“i3555‘;‘66}}5’}566"/3{66‘Mé';s‘ﬁ'r‘é'rﬁ'é'r‘{t """ 3-5
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« Locked to < 1 pcycle/N Hz above 100 mHz
« Locked to < 10 pcycle /N Hz at 1 mHz
 Low frequency performance limited by ADC jitter.
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Frequency Noise Cancellation

« Test phasemeter, photoreceivers, and frequency
distribution system using representative signals.

30 Hz/\ Hz frequency noise

— 2-20 MHz heterodyne signal
— 2-8 GHz sidebands for clock noise transfer

« System tests will characterize interactions between
different errors.

Digital filter phase fluctuations (from independent clocks).

Frequency noise aliasing from multiple heterodyne
frequencies.

Interpolation error in the presence of real-world phasemeter
filtering and sampling jitter.

ADC harmonic distortion mixing with EOMs inter-modulation
products.
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Phasemeter technology readiness

 Phasemeter validated in laboratory
— Analytical models of the phasemeter replicate the test data.

Rad Hard ADC (Maxwell 9042) Noise
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Phasemeter Summary

Breadboard phasemeter works very well.
— Phasemeter has passed all digital and electronic tests.
— Critical requirements have been demonstrated.

— Optical/electronic tests of the phasemeter in a system environment are
underway.

Phasemeter has a clear path to flight. All components are off the shelf
items.

— Algorithms already developed - will perform identically on any FPGA/ASIC.
— ADC requirements non-critical. Suitable rad-hard candidates available.

Future Work

Increase sampling frequency to 80 MHz to ease analog filtering
requirements.

Improve DC phase accuracy via ADC calibration tones.
Reduce susceptibility to cycle slipping
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